DiracNets: Training Very Deep Neural Networks Without Skip-Connections
Deep neural networks with skip-connections, such as ResNet, show excellent performance in various image classification benchmarks. It is though observed that the initial motivation behind them - training deeper networks - does not actually hold true, and the benefits come from increased capacity, rather than from depth. Motivated by this, and inspired from ResNet, we propose a simple Dirac weight parameterization, which allows us to train very deep plain networks without skip-connections, and achieve nearly the same performance. This parameterization has a minor computational cost at training time and no cost at all at inference. We're able to achieve 95.5 34-layer deep plain network, surpassing 1001-layer deep ResNet, and approaching Wide ResNet. Our parameterization also mostly eliminates the need of careful initialization in residual and non-residual networks. The code and models for our experiments are available at https://github.com/szagoruyko/diracnets
READ FULL TEXT