Direct parametrisation of invariant manifolds for generic non-autonomous systems including superharmonic resonances

06/16/2023
by   Alessandra Vizzaccaro, et al.
0

The direct parametrisation method for invariant manifold is a model-order reduction technique that can be directly applied to finite element problems in order to derive efficient and converged reduced-order models (ROMs) for non-linear structures. In the field of nonlinear vibrations, it has already been applied to autonomous and non-autonomous problems in order to propose ROMs that can compute backbones and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order development in order to cope with the non-autonomous term, this assumption is here relaxed by proposing a completely different treatment. The key idea is to enlarge the dimension of the dynamical system to make it autonomous and treat the added coordinates related to the forcing as already being written with normal coordinates. The parametrisation method is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, one is able to compute ROMs for superharmonic resonance. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs for 3:1 and 2:1 superharmonic resonances, as well as converged results for problems where the first-order truncation on the non-autonomous terms used in previous developments showed a clear limitation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset