Discontinuous Galerkin Finite Element Methods for 1D Rosenau Equation
In this paper, discontinuous Galerkin finite element methods are applied to one dimensional Rosenau equation. Theoretical results including consistency, a priori bounds and optimal error estimates are established for both semidiscrete and fully discrete schemes. Numerical experiments are performed to validate the theoretical results. The decay estimates are verified numerically for the Rosenau equation.
READ FULL TEXT