Discovering Conservation Laws using Optimal Transport and Manifold Learning
Conservation laws are key theoretical and practical tools for understanding, characterizing, and modeling nonlinear dynamical systems. However, for many complex dynamical systems, the corresponding conserved quantities are difficult to identify, making it hard to analyze their dynamics and build efficient, stable predictive models. Current approaches for discovering conservation laws often depend on detailed dynamical information, such as the equation of motion or fine-grained time measurements, with many recent proposals also relying on black box parametric deep learning methods. We instead reformulate this task as a manifold learning problem and propose a non-parametric approach, combining the Wasserstein metric from optimal transport with diffusion maps, to discover conserved quantities that vary across trajectories sampled from a dynamical system. We test this new approach on a variety of physical systemsx2014including conservative Hamiltonian systems, dissipative systems, and spatiotemporal systemsx2014and demonstrate that our manifold learning method is able to both identify the number of conserved quantities and extract their values. Using tools from optimal transport theory and manifold learning, our proposed method provides a direct geometric approach to identifying conservation laws that is both robust and interpretable without requiring an explicit model of the system nor accurate time information.
READ FULL TEXT