Discovering Process Models from Uncertain Event Data

09/20/2019
by   Marco Pegoraro, et al.
0

Modern information systems are able to collect event data in the form of event logs. Process mining techniques allow to discover a model from event data, to check the conformance of an event log against a reference model, and to perform further process-centric analyses. In this paper, we consider uncertain event logs, where data is recorded together with explicit uncertainty information. We describe a technique to discover a directly-follows graph from such event data which retains information about the uncertainty in the process. We then present experimental results of performing inductive mining over the directly-follows graph to obtain models representing the certain and uncertain part of the process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset