Distance covariance for discretized stochastic processes

06/25/2018
by   Herold Dehling, et al.
0

Given an iid sequence of pairs of stochastic processes on the unit interval we construct a measure of independence for the components of the pairs. We define distance covariance and distance correlation based on approximations of the component processes at finitely many discretization points. Assuming that the mesh of the discretization converges to zero as a suitable function of the sample size, we show that the sample distance covariance and correlation converge to limits which are zero if and only if the component processes are independent. To construct a test for independence of the discretized component processes we show consistency of the bootstrap for the corresponding sample distance covariance/correlation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset