Distance Metrics for Measuring Joint Dependence with Application to Causal Inference

11/25/2017
by   Shubhadeep Chakraborty, et al.
0

Many statistical applications require the quantification of joint dependence among more than two random vectors. In this work, we generalize the notion of distance covariance to quantify joint dependence among d >= 2 random vectors. We introduce the high order distance covariance to measure the so-called Lancaster interaction dependence. The joint distance covariance is then defined as a linear combination of pairwise distance covariances and their higher order counterparts which together completely characterize mutual independence. We further introduce some related concepts including the distance cumulant, distance characteristic function, and rank-based distance covariance. Empirical estimators are constructed based on certain Euclidean distances between sample elements. We study the large sample properties of the estimators and propose a bootstrap procedure to approximate their sampling distributions. The asymptotic validity of the bootstrap procedure is justified under both the null and alternative hypotheses. The new metrics are employed to perform model selection in causal inference, which is based on the joint independence testing of the residuals from the fitted structural equation models. The effectiveness of the method is illustrated via both simulated and real datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset