Distributed and Distribution-Robust Meta Reinforcement Learning (D2-RMRL) for Data Pre-storing and Routing in Cube Satellite Networks

06/14/2022
by   Ye Hu, et al.
0

In this paper, the problem of data pre-storing and routing in dynamic, resource-constrained cube satellite networks is studied. In such a network, each cube satellite delivers requested data to user clusters under its coverage. A group of ground gateways will route and pre-store certain data to the satellites, such that the ground users can be directly served with the pre-stored data. This pre-storing and routing design problem is formulated as a decentralized Markov decision process (Dec-MDP) in which we seek to find the optimal strategy that maximizes the pre-store hit rate, i.e., the fraction of users being directly served with the pre-stored data. To obtain the optimal strategy, a distributed distribution-robust meta reinforcement learning (D2-RMRL) algorithm is proposed that consists of three key ingredients: value-decomposition for achieving the global optimum in distributed setting with minimum communication overhead, meta learning to obtain the optimal initial to reduce the training time under dynamic conditions, and pre-training to further speed up the meta training procedure. Simulation results show that, using the proposed value decomposition and meta training techniques, the satellite networks can achieve a 31.8 40.7 reinforcement learning algorithm. Moreover, the use of the proposed pre-training mechanism helps to shorten the meta-learning procedure by up to 43.7

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro