Distributional Modeling on a Diet: One-shot Word Learning from Text Only

04/14/2017
by   Su Wang, et al.
0

We test whether distributional models can do one-shot learning of definitional properties from text only. Using Bayesian models, we find that first learning overarching structure in the known data, regularities in textual contexts and in properties, helps one-shot learning, and that individual context items can be highly informative. Our experiments show that our model can learn properties from a single exposure when given an informative utterance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset