Distributionally Ambiguous Optimization Techniques in Batch Bayesian Optimization
We propose a novel, theoretically-grounded, acquisition function for batch Bayesian optimization informed by insights from distributionally ambiguous optimization. Our acquisition function is a lower bound on the well-known Expected Improvement function -- which requires a multi-dimensional Gaussian Expectation over a piecewise affine function -- and is computed by evaluating instead the best-case expectation over all probability distributions consistent with the same mean and variance as the original Gaussian distribution. Unlike alternative approaches including Expected Improvement, our proposed acquisition function avoids multi-dimensional integrations entirely, and can be computed exactly as the solution of a convex optimization problem in the form of a tractable semidefinite program (SDP). Moreover, we prove that the solution of this SDP also yields exact numerical derivatives, which enable efficient optimization of the acquisition function. Finally, it efficiently handles marginalized posteriors with respect to the Gaussian Process' hyperparameters. We demonstrate superior performance to heuristic alternatives and approximations of the intractable expected improvement, justifying this performance difference based on simple examples that break the assumptions of state-of-the-art methods.
READ FULL TEXT