Dizygotic Conditional Variational AutoEncoder for Multi-Modal and Partial Modality Absent Few-Shot Learning

06/28/2021
by   Yi Zhang, et al.
0

Data augmentation is a powerful technique for improving the performance of the few-shot classification task. It generates more samples as supplements, and then this task can be transformed into a common supervised learning issue for solution. However, most mainstream data augmentation based approaches only consider the single modality information, which leads to the low diversity and quality of generated features. In this paper, we present a novel multi-modal data augmentation approach named Dizygotic Conditional Variational AutoEncoder (DCVAE) for addressing the aforementioned issue. DCVAE conducts feature synthesis via pairing two Conditional Variational AutoEncoders (CVAEs) with the same seed but different modality conditions in a dizygotic symbiosis manner. Subsequently, the generated features of two CVAEs are adaptively combined to yield the final feature, which can be converted back into its paired conditions while ensuring these conditions are consistent with the original conditions not only in representation but also in function. DCVAE essentially provides a new idea of data augmentation in various multi-modal scenarios by exploiting the complement of different modality prior information. Extensive experimental results demonstrate our work achieves state-of-the-art performances on miniImageNet, CIFAR-FS and CUB datasets, and is able to work well in the partial modality absence case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset