Domain Embedded Multi-model Generative Adversarial Networks for Image-based Face Inpainting
Prior knowledge of face shape and location plays an important role in face inpainting. However, traditional facing inpainting methods mainly focus on the generated image resolution of the missing portion but without consideration of the special particularities of the human face explicitly and generally produce discordant facial parts. To solve this problem, we present a stable variational latent generative model for large inpainting of face images. We firstly represent only face regions with the latent variable space but simultaneously constraint the random vectors to offer control over the distribution of latent variables, and combine with the non-face parts textures to generate a face image with plausible contents. Two adversarial discriminators are finally used to judge whether the generated distribution is close to the real distribution or not. It can not only synthesize novel image structures but also explicitly utilize the latent space with Eigenfaces to make better predictions. Furthermore, our work better evaluates the side face impainting problem. Experiments on both CelebA and CelebA-HQ face datasets demonstrate that our proposed approach generates higher quality inpainting results than existing ones.
READ FULL TEXT