Donsker Theorems for Occupation Measures of Multi-Dimensional Periodic Diffusions
We study the empirical process arising from a multi-dimensional diffusion process with periodic drift and diffusivity. The smoothing properties of the generator of the diffusion are exploited to prove the Donsker property for certain classes of smooth functions. We partially generalise the finding from the one-dimensional case studied in [van der Vaart van Zanten, 2005]: that the diffusion empirical process exhibits stronger regularity than in the classical case of i.i.d. observations. As an application, precise asymptotics are deduced for the Wasserstein-1 distance between the time-T occupation measure and the invariant measure in dimensions d≤3.
READ FULL TEXT