DotFAN: A Domain-transferred Face Augmentation Network for Pose and Illumination Invariant Face Recognition

02/23/2020
by   Hao-Chiang Shao, et al.
22

The performance of a convolutional neural network (CNN) based face recognition model largely relies on the richness of labelled training data. Collecting a training set with large variations of a face identity under different poses and illumination changes, however, is very expensive, making the diversity of within-class face images a critical issue in practice. In this paper, we propose a 3D model-assisted domain-transferred face augmentation network (DotFAN) that can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains. DotFAN is structurally a conditional CycleGAN but has two additional subnetworks, namely face expert network (FEM) and face shape regressor (FSR), for latent code control. While FSR aims to extract face attributes, FEM is designed to capture a face identity. With their aid, DotFAN can learn a disentangled face representation and effectively generate face images of various facial attributes while preserving the identity of augmented faces. Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity so that a better face recognition model can be learned from the augmented dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset