DPSNN: A Differentially Private Spiking Neural Network
Privacy-preserving is a key problem for the machine learning algorithm. Spiking neural network (SNN) plays an important role in many domains, such as image classification, object detection, and speech recognition, but the study on the privacy protection of SNN is urgently needed. This study combines the differential privacy (DP) algorithm and SNN and proposes differentially private spiking neural network (DPSNN). DP injects noise into the gradient, and SNN transmits information in discrete spike trains so that our differentially private SNN can maintain strong privacy protection while still ensuring high accuracy. We conducted experiments on MNIST, Fashion-MNIST, and the face recognition dataset Extended YaleB. When the privacy protection is improved, the accuracy of the artificial neural network(ANN) drops significantly, but our algorithm shows little change in performance. Meanwhile, we analyzed different factors that affect the privacy protection of SNN. Firstly, the less precise the surrogate gradient is, the better the privacy protection of the SNN. Secondly, the Integrate-And-Fire (IF) neurons perform better than leaky Integrate-And-Fire (LIF) neurons. Thirdly, a large time window contributes more to privacy protection and performance.
READ FULL TEXT