DRL-based Slice Placement under Realistic Network Load Conditions
We propose to demonstrate a network slice placement optimization solution based on Deep Reinforcement Learning (DRL), referred to as Heuristically-controlled DRL, which uses a heuristic to control the DRL algorithm convergence. The solution is adapted to realistic networks with large scale and under non-stationary traffic conditions (namely, the network load). We demonstrate the applicability of the proposed solution and its higher and stable performance over a non-controlled DRL-based solution. Demonstration scenarios include full online learning with multiple volatile network slice placement request arrivals.
READ FULL TEXT