DSNet: a simple yet efficient network with dual-stream attention for lesion segmentation
Lesion segmentation requires both speed and accuracy. In this paper, we propose a simple yet efficient network DSNet, which consists of a encoder based on Transformer and a convolutional neural network(CNN)-based distinct pyramid decoder containing three dual-stream attention (DSA) modules. Specifically, the DSA module fuses features from two adjacent levels through the false positive stream attention (FPSA) branch and the false negative stream attention (FNSA) branch to obtain features with diversified contextual information. We compare our method with various state-of-the-art (SOTA) lesion segmentation methods with several public datasets, including CVC-ClinicDB, Kvasir-SEG, and ISIC-2018 Task 1. The experimental results show that our method achieves SOTA performance in terms of mean Dice coefficient (mDice) and mean Intersection over Union (mIoU) with low model complexity and memory consumption.
READ FULL TEXT