Dynamic Power Allocation and User Scheduling for Power-Efficient and Low-Latency Communications

06/29/2018
by   Minseok Choi, et al.
0

In this paper, we propose a joint dynamic power control and user pairing algorithm for power-efficient and low-latency hybrid multiple access systems. In a hybrid multiple access system, user pairing determines whether the transmitter should serve a certain user by orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA). The proposed optimization framework minimizes the long-term time-average transmit power expenditure while reducing the queueing delay and satisfying time-average data rate requirements. The proposed technique observes channel and queue state information and adjusts queue backlogs to avoid an excessive queueing delay by appropriate user pairing and power allocation. Further, user scheduling for determining the activation of a given user link as well as flexible use of resources are captured in the proposed algorithm. Data-intensive simulation results show that the proposed scheme guarantees an end-to-end delay smaller than 1 ms with high power-efficiency and high reliability, based on the short frame structure designed for ultra-reliable low-latency communications (URLLC).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset