Dynamic traffic assignment in a corridor network: Optimum versus Equilibrium
This study investigates dynamic system-optimal (DSO) and dynamic user equilibrium (DUE) traffic assignment of departure/arrival-time choices in a corridor network. The morning commute problems with a many-to-one pattern of origin-destination demand and the evening commute problems with a one-to-many pattern are considered. In this study, a novel approach is developed to derive an analytical solution for the DSO problem. By utilizing the analytical solution, we prove that the queuing delay at a bottleneck in a DUE solution is equal to an optimal toll that eliminates the queue in a DSO solution under certain conditions of a schedule delay function. This enables us to derive a closed-form DUE solution by using the DSO solution. Numerical examples are provided to illustrate and verify analytical results.
READ FULL TEXT