EDCompress: Energy-Aware Model Compression with Dataflow

06/08/2020
by   Zhehui Wang, et al.
0

Edge devices demand low energy consumption, cost and small form factor. To efficiently deploy convolutional neural network (CNN) models on edge device, energy-aware model compression becomes extremely important. However, existing work did not study this problem well because the lack of considering the diversity of dataflow in hardware architectures. In this paper, we propose EDCompress, an Energy-aware model compression method, which can effectively reduce the energy consumption and area overhead of hardware accelerators, with different Dataflows. Considering the very nature of model compression procedures, we recast the optimization process to a multi-step problem, and solve it by reinforcement learning algorithms. Experiments show that EDCompress could improve 20X, 17X, 37X energy efficiency in VGG-16, MobileNet, LeNet-5 networks, respectively, with negligible loss of accuracy. EDCompress could also find the optimal dataflow type for specific neural networks in terms of energy consumption and area overhead, which can guide the deployment of CNN models on hardware systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset