Edge Matching with Inequalities, Triangles, Unknown Shape, and Two Players

02/10/2020
by   Jeffrey Bosboom, et al.
0

We analyze the computational complexity of several new variants of edge-matching puzzles. First we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-complete for strict inequalities but polynomial for nonstrict inequalities. Second we analyze three types of triangular edge matching, of which one is polynomial and the other two are NP-complete; all three are #P-complete. Third we analyze the case where no target shape is specified, and we merely want to place the (square) tiles so that edges match (exactly); this problem is NP-complete. Fourth we consider four 2-player games based on 1 × n edge matching, all four of which are PSPACE-complete. Most of our NP-hardness reductions are parsimonious, newly proving #P and ASP-completeness for, e.g., 1 × n edge matching.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset