Efficiency requires innovation

02/18/2019
by   Abram M. Kagan, et al.
0

In estimation a parameter θ∈ R from a sample (x_1,...,x_n) from a population P_θ a simple way of incorporating a new observation x_n+1 into an estimator θ̃_n = θ̃_n(x_1,...,x_n) is transforming θ̃_n to what we call the jackknife extension θ̃_n+1^(e) = θ̃_n+1^(e)(x_1,...,x_n,x_n+1), θ̃_n+1^(e) = {θ̃_n (x_1 ,...,x_n)+ θ̃_n (x_n+1,x_2 ,...,x_n) + ... + θ̃_n (x_1 ,...,x_n-1,x_n+1)}/(n+1). Though θ̃_n+1^(e) lacks an innovation the statistician could expect from a larger data set, it is still better than θ̃_n, var(θ̃_n+1^(e))≤n/n+1 var(θ̃_n). However, an estimator obtained by jackknife extension for all n is asymptotically efficient only for samples from exponential families. For a general P_θ, asymptotically efficient estimators require innovation when a new observation is added to the data. Some examples illustrate the concept.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro