Efficient adaptive MCMC implementation for Pseudo-Bayesian quantum tomography
We revisit the Pseudo-Bayesian approach to the problem of estimating density matrix in quantum state tomography in this paper. Pseudo-Bayesian inference has been shown to offer a powerful paradign for quantum tomography with attractive theoretical and empirical results. However, the computation of (Pseudo-)Bayesian estimators, due to sampling from complex and high-dimensional distribution, pose significant challenges that hampers their usages in practical settings. To overcome this problem, we present an efficient adaptive MCMC sampling method for the Pseudo-Bayesian estimator. We show in simulations that our approach is substantially faster than the previous implementation by at least two orders of magnitude which is significant for practical quantum tomography.
READ FULL TEXT