Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes

08/02/2018
by   Christian Donner, et al.
4

We present an approximate Bayesian inference approach for estimating the intensity of a inhomogeneous Poisson process, where the intensity function is modelled using a Gaussian process (GP) prior via a sigmoid link function. Augmenting the model using a latent marked Poisson process and Pólya--Gamma random variables we obtain a representation of the likelihood which is conjugate to the GP prior. We approximate the posterior using a free--form mean field approximation together with the framework of sparse GPs. Furthermore, as alternative approximation we suggest a sparse Laplace approximation of the posterior, for which an efficient expectation--maximisation algorithm is derived to find the posterior's mode. Results of both algorithms compare well with exact inference obtained by a Markov Chain Monte Carlo sampler and standard variational Gauss approach, while being one order of magnitude faster.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset