Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID
Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to match pedestrian images of the same identity from different modalities without annotations. Existing works mainly focus on alleviating the modality gap by aligning instance-level features of the unlabeled samples. However, the relationships between cross-modality clusters are not well explored. To this end, we propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters. Specifically, we design a Many-to-many Bilateral Cross-Modality Cluster Matching (MBCCM) algorithm through optimizing the maximum matching problem in a bipartite graph. Then, the matched pairwise clusters utilize shared visible and infrared pseudo-labels during the model training. Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level. Meanwhile, the cross-modality Consistency Constraint (CC) is proposed to explicitly reduce the large modality discrepancy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art approaches by a large margin of 8.76
READ FULL TEXT