Efficient Game-Theoretic Planning with Prediction Heuristic for Socially-Compliant Autonomous Driving

07/08/2022
by   Chenran Li, et al.
0

Planning under social interactions with other agents is an essential problem for autonomous driving. As the actions of the autonomous vehicle in the interactions affect and are also affected by other agents, autonomous vehicles need to efficiently infer the reaction of the other agents. Most existing approaches formulate the problem as a generalized Nash equilibrium problem solved by optimization-based methods. However, they demand too much computational resource and easily fall into the local minimum due to the non-convexity. Monte Carlo Tree Search (MCTS) successfully tackles such issues in game-theoretic problems. However, as the interaction game tree grows exponentially, the general MCTS still requires a huge amount of iterations to reach the optima. In this paper, we introduce an efficient game-theoretic trajectory planning algorithm based on general MCTS by incorporating a prediction algorithm as a heuristic. On top of it, a social-compliant reward and a Bayesian inference algorithm are designed to generate diverse driving behaviors and identify the other driver's driving preference. Results demonstrate the effectiveness of the proposed framework with datasets containing naturalistic driving behavior in highly interactive scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset