Efficient Learning of Urban Driving Policies Using Bird's-Eye-View State Representations

05/31/2023
by   Raphael Trumpp, et al.
0

Autonomous driving involves complex decision-making in highly interactive environments, requiring thoughtful negotiation with other traffic participants. While reinforcement learning provides a way to learn such interaction behavior, efficient learning critically depends on scalable state representations. Contrary to imitation learning methods, high-dimensional state representations still constitute a major bottleneck for deep reinforcement learning methods in autonomous driving. In this paper, we study the challenges of constructing bird's-eye-view representations for autonomous driving and propose a recurrent learning architecture for long-horizon driving. Our PPO-based approach, called RecurrDriveNet, is demonstrated on a simulated autonomous driving task in CARLA, where it outperforms traditional frame-stacking methods while only requiring one million experiences for training. RecurrDriveNet causes less than one infraction per driven kilometer by interacting safely with other road users.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset