Efficient Multi-Grained Knowledge Reuse for Class Incremental Segmentation
Class Incremental Semantic Segmentation (CISS) has been a trend recently due to its great significance in real-world applications. Although the existing CISS methods demonstrate remarkable performance, they either leverage the high-level knowledge (feature) only while neglecting the rich and diverse knowledge in the low-level features, leading to poor old knowledge preservation and weak new knowledge exploration; or use multi-level features for knowledge distillation by retraining a heavy backbone, which is computationally intensive. In this paper, we for the first time propose to efficiently reuse the multi-grained knowledge for CISS by fusing multi-level features with the frozen backbone and show a simple aggregation of varying-level features, i.e., naive feature pyramid, can boost the performance significantly. We further introduce a novel densely-interactive feature pyramid (DEFY) module that enhances the fusion of high- and low-level features by enabling their dense interaction. Specifically, DEFY establishes a per-pixel relationship between pairs of feature maps, allowing for multi-pair outputs to be aggregated. This results in improved semantic segmentation by leveraging the complementary information from multi-level features. We show that DEFY can be effortlessly integrated into three representative methods for performance enhancement. Our method yields a new state-of-the-art performance when combined with the current SOTA by notably averaged mIoU gains on two widely used benchmarks, i.e., 2.5 on PASCAL VOC 2012 and 2.3
READ FULL TEXT