Efficient Multi-Grained Knowledge Reuse for Class Incremental Segmentation

06/03/2023
by   Zhihe Lu, et al.
0

Class Incremental Semantic Segmentation (CISS) has been a trend recently due to its great significance in real-world applications. Although the existing CISS methods demonstrate remarkable performance, they either leverage the high-level knowledge (feature) only while neglecting the rich and diverse knowledge in the low-level features, leading to poor old knowledge preservation and weak new knowledge exploration; or use multi-level features for knowledge distillation by retraining a heavy backbone, which is computationally intensive. In this paper, we for the first time propose to efficiently reuse the multi-grained knowledge for CISS by fusing multi-level features with the frozen backbone and show a simple aggregation of varying-level features, i.e., naive feature pyramid, can boost the performance significantly. We further introduce a novel densely-interactive feature pyramid (DEFY) module that enhances the fusion of high- and low-level features by enabling their dense interaction. Specifically, DEFY establishes a per-pixel relationship between pairs of feature maps, allowing for multi-pair outputs to be aggregated. This results in improved semantic segmentation by leveraging the complementary information from multi-level features. We show that DEFY can be effortlessly integrated into three representative methods for performance enhancement. Our method yields a new state-of-the-art performance when combined with the current SOTA by notably averaged mIoU gains on two widely used benchmarks, i.e., 2.5 on PASCAL VOC 2012 and 2.3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset