Efficient Online Learning for Dynamic k-Clustering

06/08/2021
by   Dimitris Fotakis, et al.
0

We study dynamic clustering problems from the perspective of online learning. We consider an online learning problem, called Dynamic k-Clustering, in which k centers are maintained in a metric space over time (centers may change positions) such as a dynamically changing set of r clients is served in the best possible way. The connection cost at round t is given by the p-norm of the vector consisting of the distance of each client to its closest center at round t, for some p≥ 1 or p = ∞. We present a Θ( min(k,r) )-regret polynomial-time online learning algorithm and show that, under some well-established computational complexity conjectures, constant-regret cannot be achieved in polynomial-time. In addition to the efficient solution of Dynamic k-Clustering, our work contributes to the long line of research on combinatorial online learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro