Efficient Quantization-aware Training with Adaptive Coreset Selection

06/12/2023
by   Xijie Huang, et al.
0

The expanding model size and computation of deep neural networks (DNNs) have increased the demand for efficient model deployment methods. Quantization-aware training (QAT) is a representative model compression method to leverage redundancy in weights and activations. However, most existing QAT methods require end-to-end training on the entire dataset, which suffers from long training time and high energy costs. Coreset selection, aiming to improve data efficiency utilizing the redundancy of training data, has also been widely used for efficient training. In this work, we propose a new angle through the coreset selection to improve the training efficiency of quantization-aware training. Based on the characteristics of QAT, we propose two metrics: error vector score and disagreement score, to quantify the importance of each sample during training. Guided by these two metrics of importance, we proposed a quantization-aware adaptive coreset selection (ACS) method to select the data for the current training epoch. We evaluate our method on various networks (ResNet-18, MobileNetV2), datasets(CIFAR-100, ImageNet-1K), and under different quantization settings. Compared with previous coreset selection methods, our method significantly improves QAT performance with different dataset fractions. Our method can achieve an accuracy of 68.39 the ImageNet-1K dataset with only a 10 4.24

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset