Efficient Regularization of Squared Curvature

11/07/2013
by   Claudia Nieuwenhuis, et al.
0

Curvature has received increased attention as an important alternative to length based regularization in computer vision. In contrast to length, it preserves elongated structures and fine details. Existing approaches are either inefficient, or have low angular resolution and yield results with strong block artifacts. We derive a new model for computing squared curvature based on integral geometry. The model counts responses of straight line triple cliques. The corresponding energy decomposes into submodular and supermodular pairwise potentials. We show that this energy can be efficiently minimized even for high angular resolutions using the trust region framework. Our results confirm that we obtain accurate and visually pleasing solutions without strong artifacts at reasonable run times.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset