Efficiently Identifying Hotspots in a Spatially Varying Field with Multiple Robots
In this paper, we present algorithms to identify environmental hotspots using mobile sensors. We examine two approaches: one involving a single robot and another using multiple robots coordinated through a decentralized robot system. We introduce an adaptive algorithm that does not require precise knowledge of Gaussian Processes (GPs) hyperparameters, making the modeling process more flexible. The robots operate for a pre-defined time in the environment. The multi-robot system uses Voronoi partitioning to divide tasks and a Monte Carlo Tree Search for optimal path planning. Our tests on synthetic and a real-world dataset of Chlorophyll density from a Pacific Ocean sub-region suggest that accurate estimation of GP hyperparameters may not be essential for hotspot detection, potentially simplifying environmental monitoring tasks.
READ FULL TEXT