Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards Individualized and Explainable Robotic Support in Everyday Activities
A key challenge for robotic systems is to figure out the behavior of another agent. The capability to draw correct inferences is crucial to derive human behavior from examples. Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally (observational evidence). For this reason, robots that rely on inferences that are correlational risk a biased interpretation of the evidence. We propose equipping robots with the necessary tools to conduct observational studies on people. Specifically, we propose and explore the feasibility of structural causal models with non-parametric estimators to derive empirical estimates on hand behavior in the context of object manipulation in a virtual kitchen scenario. In particular, we focus on inferences under (the weaker) conditions of partial confounding (the model covering only some factors) and confront estimators with hundreds of samples instead of the typical order of thousands. Studying these conditions explores the boundaries of the approach and its viability. Despite the challenging conditions, the estimates inferred from the validation data are correct. Moreover, these estimates are stable against three refutation strategies where four estimators are in agreement. Furthermore, the causal quantity for two individuals reveals the sensibility of the approach to detect positive and negative effects. The validity, stability and explainability of the approach are encouraging and serve as the foundation for further research.
READ FULL TEXT