Encoding nonlinear and unsteady aerodynamics of limit cycle oscillations using nonlinear sparse Bayesian learning
This paper investigates the applicability of a recently-proposed nonlinear sparse Bayesian learning (NSBL) algorithm to identify and estimate the complex aerodynamics of limit cycle oscillations. NSBL provides a semi-analytical framework for determining the data-optimal sparse model nested within a (potentially) over-parameterized model. This is particularly relevant to nonlinear dynamical systems where modelling approaches involve the use of physics-based and data-driven components. In such cases, the data-driven components, where analytical descriptions of the physical processes are not readily available, are often prone to overfitting, meaning that the empirical aspects of these models will often involve the calibration of an unnecessarily large number of parameters. While it may be possible to fit the data well, this can become an issue when using these models for predictions in regimes that are different from those where the data was recorded. In view of this, it is desirable to not only calibrate the model parameters, but also to identify the optimal compromise between data-fit and model complexity. In this paper, this is achieved for an aeroelastic system where the structural dynamics are well-known and described by a differential equation model, coupled with a semi-empirical aerodynamic model for laminar separation flutter resulting in low-amplitude limit cycle oscillations. For the purpose of illustrating the benefit of the algorithm, in this paper, we use synthetic data to demonstrate the ability of the algorithm to correctly identify the optimal model and model parameters, given a known data-generating model. The synthetic data are generated from a forward simulation of a known differential equation model with parameters selected so as to mimic the dynamics observed in wind-tunnel experiments.
READ FULL TEXT