End-to-End Abstractive Summarization for Meetings
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel end-to-end abstractive summary network that adapts to the meeting scenario. We propose a role vector for each participant and a hierarchical structure to accommodate long meeting transcripts. Empirical results show that our model considerably outperforms previous approaches in both automatic metrics and human evaluation. For example, in the ICSI dataset, the ROUGE-1 score increases from 32.00 39.51
READ FULL TEXT