End-to-End Sound Source Separation Conditioned On Instrument Labels

11/05/2018
by   Olga Slizovskaia, et al.
0

Can we perform an end-to-end sound source separation (SSS) with a variable number of sources using a deep learning model? This paper presents an extension of the Wave-U-Net model which allows end-to-end monaural source separation with a non-fixed number of sources. Furthermore, we propose multiplicative conditioning with instrument labels at the bottleneck of the Wave-U-Net and show its effect on the separation results. This approach can be further extended to other types of conditioning such as audio-visual SSS and score-informed SSS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset