Entropy Symmetrization and High-Order Accurate Entropy Stable Numerical Schemes for Relativistic MHD Equations
This paper presents entropy symmetrization and high-order accurate entropy stable schemes for the relativistic magnetohydrodynamic (RMHD) equations. It is shown that the conservative RMHD equations are not symmetrizable and do not possess an entropy pair. To address this issue, a symmetrizable RMHD system, which admits a convex entropy pair, is proposed by adding a source term into the equations. Arbitrarily high-order accurate entropy stable finite difference schemes are then developed on Cartesian meshes based on the symmetrizable RMHD system. The crucial ingredients of these schemes include (i) affordable explicit entropy conservative fluxes which are technically derived through carefully selected parameter variables, (ii) a special high-order discretization of the source term in the symmetrizable RMHD system, and (iii) suitable high-order dissipative operators based on essentially non-oscillatory reconstruction to ensure the entropy stability. Several benchmark numerical tests demonstrate the accuracy and robustness of the proposed entropy stable schemes of the symmetrizable RMHD equations.
READ FULL TEXT