Epidemic Dynamics via Wavelet Theory and Machine Learning, with Applications to Covid-19
We introduce the concept of epidemic-fitted wavelets which comprise, in particular, as special cases the number I(t) of infectious individuals at time t in classical SIR models and their derivatives. We present a novel method for modelling epidemic dynamics by a model selection method using wavelet theory and, for its applications, machine learning based curve fitting techniques. Our universal models are functions that are finite linear combinations of epidemic-fitted wavelets. We apply our method by modelling and forecasting, based on the John Hopkins University dataset, the spread of the current Covid-19 (SARS-CoV-2) epidemic in France, Germany, Italy and the Czech Republic, as well as in the US federal states New York and Florida.
READ FULL TEXT