ES-CTC: A Deep Neuroevolution Model for Cooperative Intelligent Freeway Traffic Control

05/10/2019
by   Yuankai Wu, et al.
0

Cooperative intelligent freeway traffic control is an important application in intelligent transportation systems, which is expected to improve the mobility of freeway networks. In this paper, we propose a deep neuroevolution model, called ES-CTC, to achieve a cooperative control scheme of ramp metering, differential variable speed limits and lane change control agents for improving freeway traffic. In this model, the graph convolutional networks are used to learn more meaningful spatial pattern from traffic sensors, a knowledge sharing layer is designed for communication between different agents. The proposed neural networks structure allows different agents share knowledge with each other and execute action asynchronously. In order to address the delayed reward and action asynchronism issues, the evolutionary strategy is utilized to train the agents under stochastic traffic demands. The experimental results on a simulated freeway section indicate that ES-CTC is a viable approach and outperforms several existing methods

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset