ESPnet-se: end-to-end speech enhancement and separation toolkit designed for asr integration

11/07/2020
by   Chenda Li, et al.
0

We present ESPnet-SE, which is designed for the quick development of speech enhancement and speech separation systems in a single framework, along with the optional downstream speech recognition module. ESPnet-SE is a new project which integrates rich automatic speech recognition related models, resources and systems to support and validate the proposed front-end implementation (i.e. speech enhancement and separation).It is capable of processing both single-channel and multi-channel data, with various functionalities including dereverberation, denoising and source separation. We provide all-in-one recipes including data pre-processing, feature extraction, training and evaluation pipelines for a wide range of benchmark datasets. This paper describes the design of the toolkit, several important functionalities, especially the speech recognition integration, which differentiates ESPnet-SE from other open source toolkits, and experimental results with major benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro