Estimating and increasing the structural robustness of a network
The capability of a network to cope with threats and survive attacks is referred to as its robustness. This paper discusses one kind of robustness, commonly denoted structural robustness, which increases when the spectral radius of the adjacency matrix associated with the network decreases. We discuss computational techniques for identifying edges, whose removal may significantly reduce the spectral radius. Nonsymmetric adjacency matrices are studied with the aid of their pseudospectra. In particular, we consider nonsymmetric adjacency matrices that arise when people seek to avoid being infected by Covid-19 by wearing facial masks of different qualities.
READ FULL TEXT