Estimating Wildfire Evacuation Decision and Departure Timing Using Large-Scale GPS Data
With increased frequency and intensity due to climate change, wildfires have become a growing global concern. This creates severe challenges for fire and emergency services as well as communities in the wildland-urban interface (WUI). To reduce wildfire risk and enhance the safety of WUI communities, improving our understanding of wildfire evacuation is a pressing need. To this end, this study proposes a new methodology to analyze human behavior during wildfires by leveraging a large-scale GPS dataset. This methodology includes a home-location inference algorithm and an evacuation-behavior inference algorithm, to systematically identify different groups of wildfire evacuees (i.e., self-evacuee, shadow evacuee, evacuee under warning, and ordered evacuee). We applied the methodology to the 2019 Kincade Fire in Sonoma County, CA. We found that among all groups of evacuees, self-evacuees and shadow evacuees accounted for more than half of the evacuees during the Kincade Fire. The results also show that inside of the evacuation warning/order zones, the total evacuation compliance rate was around 46 people. The findings of this study can be used by emergency managers and planners to better target public outreach campaigns, training protocols, and emergency communication strategies to prepare WUI households for future wildfire events.
READ FULL TEXT