Estimation of Poisson arrival processes under linear models

03/02/2018
by   Michael G. Moore, et al.
0

In this paper we consider the problem of estimating the parameters of a Poisson arrival process where the rate function is assumed to lie in the span of a known basis. Our goal is to estimate the basis expansions coefficients given a realization of this process. We establish novel guarantees concerning the accuracy achieved by the maximum likelihood estimate. Our initial result is near optimal, with the exception of an undesirable dependence on the dynamic range of the rate function. We then show how to remove this dependence through a process of "noise regularization", which results in an improved bound. We conjecture that a similar guarantee should be possible when using a more direct (deterministic) regularization scheme. We conclude with a discussion of practical applications and an empirical examination of the proposed regularization schemes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset