Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT

04/21/2023
by   Burak Yetiştiren, et al.
0

Context: AI-assisted code generation tools have become increasingly prevalent in software engineering, offering the ability to generate code from natural language prompts or partial code inputs. Notable examples of these tools include GitHub Copilot, Amazon CodeWhisperer, and OpenAI's ChatGPT. Objective: This study aims to compare the performance of these prominent code generation tools in terms of code quality metrics, such as Code Validity, Code Correctness, Code Security, Code Reliability, and Code Maintainability, to identify their strengths and shortcomings. Method: We assess the code generation capabilities of GitHub Copilot, Amazon CodeWhisperer, and ChatGPT using the benchmark HumanEval Dataset. The generated code is then evaluated based on the proposed code quality metrics. Results: Our analysis reveals that the latest versions of ChatGPT, GitHub Copilot, and Amazon CodeWhisperer generate correct code 65.2 of the time, respectively. In comparison, the newer versions of GitHub CoPilot and Amazon CodeWhisperer showed improvement rates of 18 7 smells, was found to be 8.9 minutes for ChatGPT, 9.1 minutes for GitHub Copilot, and 5.6 minutes for Amazon CodeWhisperer. Conclusions: This study highlights the strengths and weaknesses of some of the most popular code generation tools, providing valuable insights for practitioners. By comparing these generators, our results may assist practitioners in selecting the optimal tool for specific tasks, enhancing their decision-making process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset