Event-triggered privacy preserving consensus control with edge-based additive noise

03/19/2023
by   Limei Liang, et al.
0

In this article, we investigate the distributed privacy preserving weighted consensus control problem for linear continuous-time multi-agent systems under the event-triggering communication mode. A novel event-triggered privacy preserving consensus scheme is proposed, which can be divided into three phases. First, for each agent, an event-triggered mechanism is designed to determine whether the current state is transmitted to the corresponding neighbor agents, which avoids the frequent real-time communication. Then, to protect the privacy of initial states from disclosure, the edge-based mutually independent standard white noise is added to each communication channel. Further, to attenuate the effect of noise on consensus control, we propose a stochastic approximation type protocol for each agent. By using the tools of stochastic analysis and graph theory, the asymptotic property and convergence accuracy of consensus error is analyzed. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed scheme.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro