Event-Triggered Tracking Control of Networked Multi-Agent Systems
This paper studies the tracking control problem of networked multi-agent systems under both multiple networks and event-triggered mechanisms. Multiple networks are to connect multiple agents and reference systems with decentralized controllers to guarantee their information transmission, whereas the event-triggered mechanisms are to reduce the information transmission via the networks. In this paper, each agent has a network to communicate with its controller and reference system, and all networks are independent and asynchronous and have local event-triggered mechanisms, which are based on local measurements and determine whether the local measurements need to be transmitted via the corresponding network. To address this scenario, we first implement the emulation-based approach to develop a novel hybrid model for the tracking control of networked multi-agent systems. Next, sufficient conditions are derived and decentralized event-triggered mechanisms are designed to guarantee the desired tracking performance. Furthermore, the proposed approach is applied to derive novel results for the event-triggered observer design problem of networked multi-agent systems. Finally, two numerical examples are presented to illustrate the validity of the developed results.
READ FULL TEXT