Exact Nonlinear Model Reduction for a von Karman beam: Slow-Fast Decomposition and Spectral Submanifolds

03/08/2017
by   Shobhit Jain, et al.
0

We apply two recently formulated mathematical techniques, Slow-Fast Decomposition (SFD) and Spectral Submanifold (SSM) reduction, to a von Karman beam with geometric nonlinearities and viscoelastic damping. SFD identifies a global slow manifold in the full system which attracts solutions at rates faster than typical rates within the manifold. An SSM, the smoothest nonlinear continuation of a linear modal subspace, is then used to further reduce the beam equations within the slow manifold. This two-stage, mathematically exact procedure results in a drastic reduction of the finite-element beam model to a one-degree-of freedom nonlinear oscillator. We also introduce the technique of spectral quotient analysis, which gives the number of modes relevant for reduction as output rather than input to the reduction process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset