Exact pressure elimination for the Crouzeix-Raviart scheme applied to the Stokes and Navier-Stokes problems
We show that, using the Crouzeix-Raviart scheme, a cheap algebraic transformation, applied to the coupled velocity-pressure linear systems issued from the transient or steady Stokes or Navier-Stokes problems, leads to a linear system only involving as many auxiliary variables as the velocity components. This linear system, which is symmetric positive definite in the case of the transient Stokes problem and symmetric invertible in the case of the steady Stokes problem, with the same stencil as that of the velocity matrix, provides the exact solution of the initial coupled linear system. Numerical results show the increase of performance when applying direct or iterative solvers to the resolution of these linear systems.
READ FULL TEXT