Explicit port-Hamiltonian FEM models for geometrically nonlinear mechanical systems

02/04/2022
by   Tobias Thoma, et al.
0

In this article, we present the port-Hamiltonian representation, the structure preserving discretization and the resulting finite-dimensional state space model of geometrically nonlinear mechanical systems based on a mixed finite element formulation. This article focuses on St. Venant-Kirchhoff materials connecting the Green strain and the second Piola-Kirchhoff stress tensor in a linear relationship which allows a port-Hamiltonian representation by means of its co-energy (effort) variables. Due to treatment of both Dirichlet and Neumann boundary conditions in the appropriate variational formulation, the resulting port-Hamiltonian state space model features both of them as explicit (control) inputs. Numerical experiments generated with FEniCS illustrate the properties of the resulting FE models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset