Explicitly Controllable 3D-Aware Portrait Generation
In contrast to the traditional avatar creation pipeline which is a costly process, contemporary generative approaches directly learn the data distribution from photographs and the state of the arts can now yield highly photo-realistic images. While plenty of works attempt to extend the unconditional generative models and achieve some level of controllability, it is still challenging to ensure multi-view consistency, especially in large poses. In this work, we propose a 3D portrait generation network that produces 3D consistent portraits while being controllable according to semantic parameters regarding pose, identity, expression and lighting. The generative network uses neural scene representation to model portraits in 3D, whose generation is guided by a parametric face model that supports explicit control. While the latent disentanglement can be further enhanced by contrasting images with partially different attributes, there still exists noticeable inconsistency in non-face areas, e.g., hair and background, when animating expressions. We solve this by proposing a volume blending strategy in which we form a composite output by blending the dynamic and static radiance fields, with two parts segmented from the jointly learned semantic field. Our method outperforms prior arts in extensive experiments, producing realistic portraits with vivid expression in natural lighting when viewed in free viewpoint. The proposed method also demonstrates generalization ability to real images as well as out-of-domain cartoon faces, showing great promise in real applications. Additional video results and code will be available on the project webpage.
READ FULL TEXT